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WHAT ARE WE TRYING TO DO? \\

* Understand how Distributed Electric Propulsion (DEP) enables new vehicle capabilities
through tight coupling of propulsion to the entire vehicle system, with initial focus on
the highlift system, aerodynamics, acoustics, control, structures, and aeroelastics.

* Show the DEP integration benefits/penalties through comparison to existing aircraft,
with a focus on early adopter markets such in General Aviation to provide a
certification basis for the new technology to be applied to commercial aviation.

multi-disciplinary coupling.

* The automobile industry is currently
leading the development and application
of electric technologies, showcasing how
new degrees of freedom are opened for
vehicle design.
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Technical Approach

Increasing wing loading is critical for achieving
high aerodynamic efficiency at high speed
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Technical Approach

* Conduct aero-propulsive design and analysis of a highly S -
integrated wing-propeller system using a variety of CFD ’ig}.\
analytical tools. ”*\&

* Design and fabricate a mobile ground truck rig that can KA‘:& )
permit full-scale testing with sufficient accuracy. -4 !

* Develop and conduct component tests of the motors,
controllers, propellers, energy, and power system.

* Design and assemble the instrumentation system.
e Design the structure and fabricate the wing.

* Integrate the nacelles, motor, controllers, propellers,
and onboard wing instrumentation.

* Calibrate the load balance on the truck, debug the fully
integrated wing and truck system.

 Conduct a NASA AFRC review to assure safe testing.

* Conduct initial low-speed and then high-speed testing.
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Impact

Make Aircraft More Efficient, with Improved Emissions, Noise, Ride Quality, Safety, and Operating Costs

* Typically achieving an improvement in one aircraft capability requires taking penalties in other areas.

* By leveraging this new integration technology, Distributed Electric Propulsion (DEP), dramatic
improvements are possible across these areas, while only absorbing penalties in range and weight
(which penalties will become significantly reduced as battery specific energy improves).

* Applying DEP to a General Aviation aircraft enables these improvements, while limiting the range to
200 miles and increasing the vehicle weight from 2700 Ib to 3400 Ib. Baseline P2006T Baseline Legacy

P2006T 2pax 174 ki s P2006T 4pax 174 kt

Aerodynamic Efficiency: Lift/Drag ratio improved from 11 to 17
Propulsive Efficiency: Energy conversion efficiency from 24% to 83%
Emissions: Life cycle GHG decreased by 5x using U.S. average electricity
Community Noise: Certification noise level from 85 to <65 dB

Safety: Highly redundant propulsion system

Ride Quality: Wing loading increased by >2.5x

Operating Costs: Energy costs decrease from 45% to 12% of TOC

P2006T 4pax 250 kt s | egacy 250 kt
GosHawk 174 kt
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Aero-Propulsive Wing and

Propeller Design
Alex Stoll, Joby Aviation
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Momentum Theory Analysis
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3D CFD Wing Analysis

RANS CFD (STAR-CCM+, FUN3D) VLM (VSPAERO)

* Higher order * Lower order

 More computationally expensive * Inadequate stall prediction

e Ran with multiple turbulence * Good check for other analyses
models
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STAR-CCM+ Results (a=22)
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Comparison of CFD Results
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STAR-CCM+ Unblown Wing 4%
Turbulence Model Comparison
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Sensitivity to V_, at 300 hp
(=102, STAR-CCM+ results)
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Propeller Design

e Optimized using blade element momentum theory
— Maximize thrust in takeoff conditions
— Remain unstalled at static conditions
— Low tip speed (450 ft/s) to keep noise low

* Aerodynamics verified in CFD
* Initially 3 blades to reduce cost
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5-Blade Folding Design
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Propeller Performance
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Wing Height Sensitivity CFD Results

O~ Pressure Drag (No Truck) == Lift (No Truck) A Pressure Drag (Truck)  =#=Lift (Truck) 4

4%
A

2%
o)
=
< ]
-c nNo/
'.d_J. U'/0
%5 -20 -15 -10 -5 0 5 10 15 % f
(2]
E ———"— =T
.g noy/ ol A
) =£7/0
Q
[ .
2 O
£
= 4%
S
& | O

6%

|
Wing Height (ft)

January 13-15, 2015 NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar 19



25
20
15

CLmax
10

Lift vs Speed Sensitivity

Lift Coefficient Lift Coefficient and Drag Coefficient @ 20 kts
versus versus
Reference Speed Angle of Attack

25 WcCL

M Effective CL
35 //’—N cD

10 ——

Constant Power
(300 hp)

Unpowered
0
10 20 30 40 50 60 70 0 10 20 30 40
Velocity (kts) oty

Velocity Ratio
(Vinduced/Vreference)

61 KEAS: 0.80
50 KEAS: 1.11
40 KEAS: 1.59
20 KEAS: 4.09

January 13-15, 2015 NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar 20



Motor/Controller Development
Battery Development

Component Testing
Scott MacAfee, Joby Aviation
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20 pole 24slot BLDC

2 turn
Direct drive

Joby IM1

22
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Controller

MGM Compro 280120
280A, 120V
Sensorless
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32 LiFePO, cells x6 packs
180 Ah
110 kWh

6x 6kW power
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61kts A
12kW shaft S
6500rpm

Current
Voltage
Thrust
Torque
RPM
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Truck Test Rig
Wing Fabrication

Integration
Alec Clarke, Joby Aviation
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Truck Test Rig

e Converted Peterbilt truck

e Steel truss supports wing above
the truck

* Load cells are mounted
between the wing and the truss

e Airbag suspension isolates the
truss assembly from road
vibrations

* Onboard power supply to run
the motors
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Truck Test Rig - Outline

Load Cell Attachment Point 1

Hydraulic
Actuator

Power Supply
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Load Cell Assembly

Load Cell Design

Aft wing mount

Thrust/drag/yaw load cell Lift/pitch moment

Load cell

2,990#4— Side force/yaw
load cell
left load cell

Lift/pitch moment
assembly only)

Load cell

V2" steel plates

Left load cell assembly shown above — right assembly is similar
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Truck with Lowered Structure
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Wing Fabrication

)

e Carbon fiber wing
* Two skin design
* Dual spar configuration

18 Nacelles

— Motors

— Heatsink

— Props

* 6 access hatches

 Wing structural test to
over 4000 Ib
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Wing Attachment Rib
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* Load cell assembly

* Wing attachment

* Power system
wiring

* |[nstrumentation

I
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Wing Instrumentation
Calibration
Testing Preparation

Trevor Foster, ESAero
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Desired Areas of Measurement /

Wing Instrumentation Design &

Aerodynamic Performance
— Pressure strips for upper surface pressure distribution
— High frequency pressure transducers for instantaneous pressure behind prop
— Air data probe for airspeed and AoA

Aerodynamic Forces
— Load cells placed in an force balance system to acquire thrust, drag, lift, & yaw

Aeroelasticity
— Accelerometers at multiple locations

Temperature of Electronic Components
— Resistive Temperature Detectors (RTDs) place in key electronics for thermal monitoring

Groundspeed
— GPS unit to monitor ground speed

Data Storage and Telemetry
— Solid state hard drive for storage of video and sensor data
— S-band antenna for telemetry

Motor/Controller Performance

— Motor and controller data gathered from CAN bus
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Wing Instrumentation

Telectronics Miniature CAIS MCDAU-2000
(loaned by NASA Armstrong)

-Custom Force Balance with 7 Load Cells
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-120 Pressure Measurements using Strip-A-Tubing
-8 High Speed Transient Pressures

-3 Uni, 3 Biaxial, 2 Triaxial Accelerometers
-Air Data Probe with Alpha & Beta
-Inclinometer

-3 HD Cameras

-GPS, S-Band Transmitter
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Wiring Harness Design

EMI Mitigation
- Dual Isolated Shields

- Harnesses and Connectors
wrapped to prevent electrical
contact with frame

-Sensors bonded to carbon frame
have fiberglass base layer

I
|
i
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Early Validation

Instrumentation Platform

e Mass Simulator
 Test bed for DAQ/Sensors
* Practice for truck drivers

January 13-15, 2015
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Ground Vibration Isolation

e Test stand is supported on truck bed by
4 Firestone Air Bags

 Up to 6 inches of vertical movement
* Side to side movement

restricted by adjustable straps
* Video
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Airbag Suspension Video

January 13-15, 2015 NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar 41



Initial Results

AOA=0.0°, 4000 rpm, full flaps, 30 mph, 2015-01-09
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* Video
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Power Control System
Safety Review
Initial Testing

Sean Clark, NASA AFRC
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Power Control System

CAN bus (125 kBps, 21 nodes), Motor and BMS Telem., Speed cmds
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Safety Review

e 11 Safety and Asset Hazards have been identified and mitigated

* Using the formal AFRC Tech Brief process for the Low Speed (Oceano) and High
Speed (Edwards) Taxi Tests

 NASA SMEs have traveled to Joby and ESAero throughout the design, fab and

integration phases to participate in subsystem reviews and procedures
@z LEAPTech Loss of Asset/Mission m Flight Request
|
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Hazard Action Matrix (HAM) Residual Risk
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\.q_’ DATE(S) OF FLIGHT(S): |
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/- 915
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1 ithitm . Slide 4 - RE:S 1 Toate:
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LEAPTech - Tech Brief 2014-12.02 Slide 36
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Initial Testing Results

e First stationary powered
tests of the full wing were
held in November 2014, but
interference on the control
bus prevented commanding
to full power.

* Final harnesses were
integrated and control
system updates completed
and final AFRC flight request
signed off January 2015.

* Full power testing on the
Oceana runway started on
January 9, 2015.
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Integrated System Testing Video

January 13-15, 2015 NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar 48



Early Test Results

i . 40 mph, 6400 rpm a=10°
Low Speed Taxi Testing in Oceano,

CA is now underway; these
measurements were collected on
January 12, 2015

*Instrumentation system is 75%
complete; Air Data probe, wing
surface pressures and GPS are not yet
integrated, so we can’t account for
winds on the airfield will increase/ N
decrease effective airspeed (and
measured lift)

‘‘‘‘‘‘‘‘

N

7~ v

~2,300 Ibf lift

,,,,,,,,,,,,,

*Measured winds near the runway
were between 6 mph and 8 mph
during the test activity.
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Early Test Results

i . 40 mph, 6400 rpm a=10°
Low Speed Taxi Testing in Oceano,

CA is now underway; these
measurements were collected on s
January 12, 2015

*Instrumentation system is 75%
complete; Air Data probe, wing
surface pressures and GPS are not yet
integrated, so we can’t account for
winds on the airfield will increase/ N
decrease effective airspeed(and .
measured lift)
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*Measured winds near the runway
were between 6 mph and 8 mph
during the test activity.

0 1 or i E) 60 2 B EZ0 e

nnnnnnnnnnnnnnnnnnnn

January 13-15, 2015 NASA Aeronautics Research Mission Directorate 2015 LEARN/Seedling Technical Seminar 50



Information Distribution

* (3) major 2-3 page articles published in Aviation Week and Aerospace America in 2014.
* Afull session (5 papers) on LEAPTech has abstracts submitted for AIAA Aviation 2015.
e |EEE article and Smithsonian Air & Space articles are currently being written.

RESEARCH & DEVELOPMENT

Electrifying Aviation

Light aircraft are early targets for the efficiency
and safety benefits touted for electric propulsion
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Modifying the wing on a Technam
P2006T light twin would directly
compare distributed electric and
conventional propulsion.
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NASA Begins Tests On Distributed Electric Propulsion
Rig

Unique NASA low-cost testbed for distributed electric propulsion is powered up

Daily Updates, Access An
Now online and in NEW mobile app

Graham Warwick | Aviation Week & Space Technology Dec 1, 2014
Mewan [ snare | wweet 841 {a] COMMENTS 0

hAS

A truck-mounted wing will speed along a lakebed runway to measure lift increase from airflow
through 18 electric-driven propeliers on the leading edge.

NASA Photos

NASA already is learning about distributed electric propulsion from a unique low-cost
testbed, as it completes high-power static tests ahead of low-speed taxi trials leading to
high-speed runs on the dry lakebed at Edwards AFB, California, in January. As an initial
step in the agency’s proposed plan to fly an X-plane distributed-propulsion demonstrator,
the Hybrid Electric Integrated Systems Testbed (Heist) is a truck-mounted rig built to
enable NASA to ground-test a full-scale wing ...

. Engineering Notebook

The power of electricity

A team of NASA and industry engineers is almost ready to start ground testing a wing and
propeller system that could point the way toward the first electrically propelled commuter
and general aviation planes. Ben lannotta tells the story of LEAPTech, the Leading Edge

Asynchronous Propellers Technology project.
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Next Steps

* I|nitial testing will continue at Oceana Airfield in San Luis Obispo
through the end of Jan to ensure all instrumentation is working well.

* High speed testing at typical General Aviation 61 knot stall speeds
will begin at NASA AFRC in February.

* Extensive failure mode testing will be conducted as part of
developing a full DEP aerodynamic database in March/April.

* Motor controllers will be replaced in May/June to permit spread
frequency and phasing acoustic experiments (providing an initial
experimental dataset to NASA TAC/TTT DEP acoustic research).

* All research will provide significant value and risk reduction as this
research transitions to NASA TAC/CAS Convergent Electric
Propulsion flight demonstrator project.
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Questions?

THANK YOU to an incredibly talented,
enthusiastic and energetic team, with too
many researchers to list individually.

Thanks to Joby, AFRC, ESAero and LaRC

IRAD, for cost sharing; without this we
never could have accomplished so much.

Thanks to NARI for taking a chance on such
an aggressive research proposal that few
believed could be accomplished in 1 year.

Thanks to the NASA TAC/CAS Project for
taking this research to the next stage.
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